South Carolina Department of Transportation

Electronic Toll Collection System & Related Services
For the
Cross Island Parkway Toll Facility
Hilton Head, South Carolina
Contract P.O.# 231709

PROGRAMMER’'S PROCEDURES
MANUAL

Rev. 0.0

June 1998

1. Methodology

1.1 Purpose

The purpose ofthis document is to outline the required practices for software
development including standards and procedures. All development will adhere
to the standards outlined in this document. The processes will be tailored and
applied to the various projects and subsystems in a manner that best benefits the
project. This chapter gives an overview of the development methodology.
Chapter 2 describes the relevant software standards and guidelines, and chapter .
describes the various procedures.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Methodology « 1-1

3.4.3 Design Review Follow-Up

A flow diagram for design review follow-up is shown in Figure 3-3.

WUTS PROCESS STEPS OUTPUTS
MJIKN F1IMIW i ¢
FiEXET FEX»- == fiEWHE ACTKH RIM FSEfFWFE ACTKN TOM
[f$KN ENtfi OR OTHER FfSFtttfE
CWEffKCN \1
WTTJIBUTES FISFCHSES HVTMH him
WTOUTW TO AFfWTWIt FffFtttfE
FIUEW HEMBEFS
|
nmxvHiii
MUEW MEMBER? ANO

CHF EKMER ? I
MUEW MFKME |

lITlI |

FIfKtoE
fUMOENT ?
Lt>KN FiUEw
FIFC«T
CHIEftF3CH
NOTIES CHEF

ENOEEF, AW FiSKttfBLE
Cf?20UF Cf KFK1NC1S

Figure 3-3 Design Review Follow-Up

Action Item responses shall be prepared by designated actionees, approved by the
responsible manager, and addressed to the Design Review Chairperson.

1. Upon receipt of an action item response, the Chairperson shall distribute the
response to the Design Review Board and to other appropriate reviewers.

2. The Chairperson and other action item response recipients shall review the
response for completeness and correctness, then notify the ERB of any
objection to closure ofthe action item within 2 weeks.

It shall be the responsibility of the Chairperson to ensure that all action items
are tracked for adequate closure according to schedule. It shall be the
responsibility ofthe Chief Technical Officer to ensure that all action items
are closed according to the established schedule.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc
Proprietary Data

Procedures « 3-14

Lockheed Martin IMS

PROGRAMMER’S PROCEDURES
MANUAL
Rev. 0.0

Prepared by:
Approved by:

Approved by:

Approved by:

THIS MATERIAL CONTAINS PROPRIETARY INFORMATION OF LOCKHEED MARTIN IMS.
DISCLOSURE TO OTHERS, USE, OR COPYING WITHOUT EXPRESS WRITTEN AUTHORIZATION
OF LockHEED MARTIN IMS IS STRICTLY PROHIBITED.

© LOCKHEED MARTINIMS. UNPUBLISHED WORK. ALL RIGHTS RESERVED.
June 1, 1998.

Table of Contents

Contents

Y= (@ 1@] I @ 1€ O P USRS 1-1
L PUPOSE. ..ottt ettt ettt et et et e et e s e st eat et et e nt e st et e te b et e et e ete et e te et e ebeeteeteeteeteebeeteetesreere e 1-1
VR \V/ 1= g Vo Te [o] Koo)Y 20N OO OO SRRSO 1-2
1.3 REQUITEMENTES.....ccui ettt e et e ettt e et e e teete et e eaeeae et e eaeeteereeseeseeteeaeeseessesse e entensese et entessensesnestensenes 1-2
L4 ANALY SIS ..ttt ettt et ettt et ettt et et et e et e ete et et e eteeheebeebeebeebeebeebeebeeaeeheereebeeae e st enteae et ententesbetenes 1-3
ISR o o) o) nY o= S0RTOOOOOOOOO O O SEEOSE T E O O OO T U SO OO 1-3
1.6 P1an INCrements £0 DeBIVEIttt ettt eete e teetseae e et eneenean 1-3
1.7 Design and Build @n INCremMENT...........co.ccooviiiiiicceeeeeeee ettt ettt et ettt et ettt ens e e aan 1-3
1.8 User acceptance Of an [NCIremMENT..........ccoouoiiiiiiiiicccece ettt ettt e ettt ae et et e e e 14
1.9 ROBE-OUTL OF QN INCEIEMENT.....cci ittt ettt ettt e e te et eebeeteeteeateteeteensesaesseseeseenseneeneas 1-4

2. STANDARDS. ...ttt sttt e et e e bt e et bt e teeaR b e e bt e e Re e e bt e e R ee e be e e R bt e ReeeRb e e Eeeanteenbe e e teenneeanbeens 2-1
2.0 POWEEBUIIAEI ... ettt et e et e et et e te et e e aeeaeeteeteeneeseesteae et et et esse st esaestenseseeaaas 2-1

2.1.1 PowerBuilder Coding StANAAITS........cc.coviiiiiiiiieeeiee ettt et ss e b et seereseese e 2-1
2.1.2 PowerBuilder WIindows STANAAIAS............ccevuiiriiiiiiiiieiee ettt sa et ese b esesans 2-5
2.2 FOI T ittt ettt ettt ettt ettt ettt et Attt ettt et e At et et e teateteeteebeebeateereebeebeebeebeeteeheereereeneaneares 2-10
2.2.1 NAMING STANAAITS.covetiieeiieieeee ettt s et et e b et e se b e b e et e s e ebessebe st e s abeseebeseneseeneas 2-11
2.2.2 TOOL COAING CONVENTIONS. ...c.titiiitiititiititstisieesiere e ste st sesse et st se s esesaesestessatesbesestesessessasesesessesessessesessaseas 2-20
2.3 C Programming Language Coding Standards.............cc.cvoiiiiuiiicicceiceeee ettt 2-22
2.3.1 LeXICAl EIBIMENLS.ciiiiieiiiieiiee ettt ettt bbb e et st st e e b s e et et et e s tese et e bt e s e ne s e e tenes 2-22
2.3.2 DECIAratioNS @NG TYPES....iiviiiierietirieiesteiste sttt ete et ete sttt e s et e st e seese s et e s be s e et e b beseese s et abeseate b ebesteneeseneans 2-30
2.3.3 NAMES ANU EXPIESSIONS. ... vcuiieiiitesiitisieite it stese e et st ste bttt e se st eseebe s e be st be s e e sebe st e s e s ese st eteesesa et e nsesesseneans 2-33
PR I 1V 1= 4 oo] ST 2-35
PG JL ST = 1= 1= 0 £SO 2-36
B2 JL G TN LU Tox o] o TSSOSO 2-41
2.3.7 System Calls @nd LIDIAry USE.........coivueiiiiiiiiisi ettt sttt ettt sa sttt se s e e stanaans 2-45
PG IS 1] 010 1 @ 101 o] | PSP SUP PSRRI 2-46
R Lo To [T aTo [e T 4] o] 1= OSSPSR 2-52

3. PROCEDURES. ...ttt ettt h et e b bt et e e s he e e b e e e bt e e s bt e e be e e abe e s b b e e s teenbeeebeenneeanbe s 3-1
2.1 Design ReVIEW ODJECTIVES.c.ccooiiuicieeeeeeeeee ettt ettt et et e e te e te et e eteeteesseteebeeseeateneess e s e testenseseestens 3-1
2.2 ReVIEW RESPONSIDITITIES.iiiiiciiciece ettt e b s e bt be b s ettt e st e se b e e e be s e te b eneseeseete s 3-2

3.2.1 ThE CIEIENGINEETcuiiitiieie ettt r ettt e st be s b e st e e e be b e st e seebe st ete st e s e et e e ntennenes 3-2
3.2.2 The Program MaNAgEMENT.........ccuiuiiiiuiieeieeserestesite e este e sesea et esesbesessesastessasesbesesbeseesessetessaseabessaseseesesesens 3-3
G B -V T= Y A @do o] o g = L (o] TSSOSO 3-3
3.2.4 THE DESIGN ENQINEETc.ectiiieiiiieiiieit ettt ettt ettt s et e e b e ee e s et e e et e s s e be b ebeebe e et e b beseene s e e erens 3-4
3.2.5 Engineering ReVIeW BOard (ERB)........cccciiiiiiiiiiiiieeee sttt st b e sne s esesnans 3-4
3.3 REVIEBW PrOCESS.....c.viiiiie ettt ettt et et et e st e st e et et e et e e beebeebeebeeaeereeteebe e e eneans 3-5
3.3.1 DeSIgN REVIEW PrEPAIAtiON......ccviiiiiiiiieiieieieiee ettt st a et e b b esesbeseete st besreresse e ebeneanens 3-5
3.3.2 DESIGN REVIEW CONEENL.....eeuiitiiiiiisieteiete sttt ettt ettt se bt e s e s et e e be s e ebe b eb e st eseete e e be st e re b enesaena et e eans 3-7
3.3.3 ConduCting The DESIGN REVIEW.......ccvciiiuiiiieieieieie ittt sttt st et et e st es e te e ebe st be st esesae e seneens 3-9
3.4 DESIGN REVIBWS......oiiictecee ettt et e te et et e e te et e eteeteeteeaeeaeebeete et estessesa et entensessensestentens 3-11
BT U g 0T 1T 3-11

LOCKHEED MA RTIN Cp

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Prog_Proc.doc Contents o i
Proprietary Data

L s (oo] o TSSO
3.4.3 DeSIgN REVIEW FOHOW-UP.....ciiiiiiiiiciiees ettt sttt bbb et ne et e e s e 3-14

GLOSSARY OF TERMS.......eooi ittt b et b e ae e bt a e e e he e e e s bt et e s b e e besbe e beeb e et e eb e e bt eneanbeenrenas 1
LOCKHEED MARTIN UT
SCDOT Programmer’s Procedures Manual Rev. 0.0
Contents -« i

SC_DOT\User Manual\Rev_0.0\Programmers\Prog_Proc.doc

Proprietary Data

1. Methodology

3. The Chairperson’s design review report will describe the conclusions,
problems, and Action Items. It shall indicate the group or individual design
review responsible for closing the Action Items with due dates.

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures « 3-15
Proprietary Data

1.2 Methodology

The overall software development methodology is briefly outlined in this section.
The development process will be in the context ofan object-oriented view of the

system. The figure below is an overview of the processes involved.

Figure 1-1 Development Processes

1.3 Requirements

The requirements process should:
1. ldentify the scope ofthe development
2. Identify the details of all interfaces
3. Decide which use cases the system will support

4. Develop a first cut at time and cost estimate

Use case modeling should be adopted to document the outputs of this stage.

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Methodology « 1-2

1.4 Analysis

The purpose of this phase is to fully define the problem in the proposed business
solution. This phase should also provide a sound basis for later incremental
development and for the refining of estimates made during the requirements
phase.

The models developed are:
1. Business object model
2. Interface object model
3. Dynamic model

4. Interaction model

To document the outputs from this phase, use OMT with UML notation.

1.5 Prototype

The purpose of the prototyping phase is to agree on Ul design with the users and
to clarify requirements. Prototyping should be used primarily for Ul-related
development.

The models developed are:

1. GUIs

2. Interface object model

1.6 Plan Increments to Deliver

The purpose ofthis phase is to develop a plan that indicates the increments to
deliver and to identify the mapping ofthe different use cases to the increments.

The models developed are:

Development schedule

1.7 Design and Build an Increment

The purpose of this phase is to develop usable functionality that is consistent
with the requirements as documented in a use case. Also, this phase should be
used to refine the understanding ofthe remaining increments.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Methodology < 1-3

The models developed/enhanced are:

1.

2
3
4.
5

Business object model

Interface object model

. Storage object model

Dynamic model

Interaction model

To document the outputs from this phase, use OMT with UML notation. The

applicable coding standards are detailed in Chapter 2.

1.8 User Acceptance of an Increment

The purpose of this phase is to demonstrate the functionality and to achieve
formal acceptance for the increment. During this phase, a formal test plan should
be created for the increment. Also, the relevant user training in the features

being implemented in the increment should be developed.

1.9 Roll-Out of an Increment

During this phase, the completed system is rolled out into the user environment
via established CM procedures.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc

Methodology « 1-4

2. Standards

2.1 PowerBuilder

2.1.1 PowerBuilder Coding Standards

2111 General Standards

Many ofthe standards entitled ‘C Standards’ in this section are applicable to GUI coding. In
particular, the established guidelines concerning the in-line commenting of source code should be
applied by the GUI programmer as well.

2.1.1.2 Naming Conventions

Variables in PowerBuilder scripts should be hamed according to the following convention:

<scope initialxdata type initial>_<variable_name>
The ‘variable name’ component should be meaningful: ~ for example: gs_VariableName for a
global string, 1d_VariableName for an instance real, and si_VariableName for a shared integer.

2.1.1.3 PowerBuilder Objects

PowerBuilder objects should be named according to the following convention:

<PB_object_type><variable_name>

The ‘PB_object_type’ component is taken from the following list:

window w

data window d_

drop down data window dddw

data window control dw
LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOT\User Manual\Rev 0.0\Programmers\Chap_2.doc Standards ¢ 2-1

function f

menu m_
structure S_
query a_
user object u_

2.1.1.4 PowerBuilder Functions

PowerBuilder functions should be named according to the following convention:

<PB_function_type><variable_name>

The ‘PB_function_type’ component is taken from the following list:

window function wif
menu function mf_
user object function uf_
global function f_

2.1.1.5 PowerBuilder Structures

PowerBuilder structures will be named according to the following convention:

<PB_structure_type><variable_name>

The ‘PB_structure_type’ component is taken from the following list:

window structure ws
menu structure ms_
user object structure us_
global structure S_

Instances of PowerBuilder structures should be named according to the following convention:

<scope initial><object initial>str_<variable_name>

—A\r
LOCKHEED MARTI

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-2

2.1.1.6 PowerBuilder Scripting Standards

Programmers should follow certain standards that are specific to coding in the PowerBuilder scripting
language:

e Always use dot notation.

* Whenever possible, avoid referring to windows by name. Instead, use constructs such as the
parent pronoun or the ‘this’ pronoun to refer to objects.

e Capitalize the first letter of all words for functions and for flow-of-control structures — e.g.,
If, Else, DWGetUpdateStatus.

e Declare all variables at the top of the PowerBuilder script.

2.1.1.7 PowerBuilder Portability Issues and Standards

To ensure that the PowerBuilder code developed for the Windows GUI will work correctly not only
in the Windows implementation but also in the UNIX / Motif implementation of PowerBuilder,
programmers should follow several additional guidelines formulated by Powersoft:

e Do not use DDE. Although DDE will be supported under UNIX, an application that uses it
will be unable to communicate with any non-PowerBuilder applications.

e Whenever possible, use PowerBuilder functions and avoid the using external function calls.
For example, a call to a Windows API function will not work on the UNIX platform.

e Do not use the file WIN.INI to store session options for the application. Instead, use the
application’s own .INI file.

e Do not use VBX controls, because they will not be supported under UNIX.
» Do not Windows message ids, because they have no meaning on the UNIX platform.

e Avoid the use of fully specified pathnames in PowerBuilder scripts, because name
conventions are platform specific. Ifthe use of a pathname is unavoidable, encapsulate the
portability problem: build the name dynamically — by (writing and) using functions such as
GetDiskName() and GetDirectorySeparator(). Only the module that contains these functions
is platform specific.

e Do not use the second mouse button, because it will probably not be supported under UNIX.
2.1.1.8 Window Controls within PowerBuilder

Window controls within PowerBuilder will be able to retain the prefix that PowerBuilder places on
them by default. The following is a list for reference:

CheckBox cbx
CommandButton cb
DataWindow dw
DropDownL istBox ddib
EditMask em

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTAUser Manual\Rev 0.0\Programmers\Chap_2.doc Standards ¢ 2-3

2.1.1.9

Graph
GroupBox
HorizontalScrollBar
Line

ListBox
MultiLineEdit
Oval

Picture
PictureButton
RadioButton
Rectangle
RoundRectangle
SingleLineEdit
StaticText
UserObject

VerticalScrollBar

Configuration Control and Code Management

rr

sle_

st_
uo_

vsb

The LMIMS development environment includes the DEC (Digital Equipment Corporation) Code
Management System as well as several software repository and change-control tools developed in-

house.

LOCKHEED

SCDOT Programmer's Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc

Standards « 2-4

2.1.2 PowerBuilder Windows Standards

2.1.2.1 Window Design Standards

2.1.2.1.1 Window Types

The application frame will be an MDI frame with MicroHelp. At initial application startup, this
window will be maximized. If possible, the application should save the size and positioning of this
window before closing and should restore it upon restarting.

Documents (sheets) will use Main as a window type. The application will ordinarily position newly
opened documents by cascading. In any case, the application must open all documents in the same
manner. If possible, before closing, the application should save the size and positioning ofall
documents, restoring them upon restarting.

Dialogs will use the Response window type and will be centered on the screen.

The application will present information to the user through windows of MessageBox type centered
on the screen.

The application will provide Help through popup windows, filling (initially) the right-hand half of the
screen.

2.1.2.1.2 Colors

To comply with the GUI mandate to enable the user to control the application, many of the colors
used will come from those chosen by the user through the Windows Control Panel. To ensure that
certain application features are visually clear, however, there are some important exceptions to this
principle.

The MDI Frame background color will be the (user-selectable) Windows “application color.”

Documents will use the Windows “windows color” fortheir background. The “text” of documents
will be black, with Static Text (e.g., labels, headings) using the “window text” color of Windows.
However, documents that are reports provide an important exception to these rules — all reports will
use black text on a white background.

Window controls will use “window text” colored text on a “window color” background. An
exception is the Single Line Edit control (SLE). All SLEs will use black text on a white background.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-5

2.1.2.1.3 Fonts

The application will use the Arial TrueType font for all text displayed, specifically:

labels 10-point bold Arial
report titles 16-point bold Arial
headers 10-point bold Arial
static text 10-point bold Arial
data 10-point bold Arial
controls 10-point bold Arial

2.1.2.1.4 Borders

The application will use the following conventions for borders:

labels none
headers none
static text none
editable data 3D Lowered
protected data none
controls 3D Lowered
data windows 3D Lowered

2.1.2.1.5 Navigation Methods

Along with a menu system, the application will typically provide toolbars. However, any action that
can be invoked from a toolbar must also be accessible through a pull-down menu. Also, every action
will be accessible from the keyboard; the application will not require the use of a mouse.

Field traversal shall be from the top left of the window to its bottom right, and any command buttons
will be located at the window’s bottom right.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-6

To ensure that the product is consistent with common Windows applications, the following names
shall be used only to describe the actions indicated below:

Action Meaning in Edit Context Meaning in Database
Insert inserts after the cursor adds a record to the DB
Delete removes highlighted line(after removes a record from the

confirming) DB
OK saves and closes the window updates database and closes

the windows

Save / Apply saves only updates the DB only

Cancel exits (and / or cancels action) exits (and / or cancels
action)

2.1.2.1.6 Field Formats

e Dates will be presented in the form mm/dd/yy.
e Times will be displayed in the form hh:mm A.M. or hh:imm P.M.

e All monetary amounts will use commas — for example, $52,500 and not $52500 — and will
have the “$” sign.

2.1.2.1.7 Menus

The MDI Frame window will display a menu that contains at least one ofthe following:

File Window AAAA Help

Other items will appear in the menu as needed. In any menu, items currently unavailable to the user
should be grayed. Do not include items that will never be available.

Menus will use accelerator keys and may use shortcut keys.

Cascaded menus will go no more than two layers deep.

2.1.2.1.8 Controls

Limit the number of controls to no more than 20 per window. Whenever possible, use standard user
objects — rather than customized ones — for controls. Controls that are currently unavailable to the

user should be grayed. Do not display controls that will never be available.

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-7

2.1.2.1.9 Specific Controls and their Uses

e Static Text displays text and should not be followed by a colon.

e Command Buttons initiate an action. Command Buttons should be 298-by-109
PowerBuilder units in size. Text within Command Buttons should be bold. Every screen
should contain a default Command Button.

e Picture Buttons are Command Buttons that contain bitmaps instead of text. For
performance reasons, the size of the displayed bitmap should match the size of the Picture
Button

e Checkboxes turn options on and off. Use right-aligned text in Checkboxes. Text in
Checkboxes should be bold.

e Radio Buttons enable the selection of mutually exclusive options. Use three or less at a
time. Align Radio Buttons vertically, and right-align the text within them. Text in Radio
Buttons should be bold.

e A List Box shows a predefined set of choices, enabling multiple selection and providing
scrolling through a Vertical Scroll Bar. By default, the number of items displayed before
scrolling is seven.

e A Drop Down List Box shows a predefined set of choices, enabling a single selection and
providing scrolling through a Vertical Scroll Bar. A Drop Down List Box should always
show the arrow and may allow editing. By default, the number of items displayed before

scrolling is seven.
« Ina Single Line Edit, data should be left-justified.
e A Picture should, for performance reasons, always be the same size as the bitmap it displays.

- A Data Window is used to display or manipulate data from the database. Report data should
always be displayed in a Data Window with any “text” left-aligned and any “numerics” right-
aligned at the decimal point. Labels in Data Windows should not be followed by colons.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-8

2.1.2.2 Starting the Application

All applications will use the same startup screen(s), customized with suitable text. The code to
perform these operations is available as a library object.

2.1.2.3 Providing Application Feedback to the User

e All reporting and corrective handling of errors will use a standard Error Screen., available as
a library object.

e The application will provide Micro-Help whenever possible.

e The application may provide audible feedback, but it must not assume that audible feedback
ever reaches the user.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTXUser Manual\Rev 0.0\Programmers\Chap_2.doc Standards < 2-9

2.2 Forte

This section presents a set of guidelines and standards for coding in the Forte application
development environment. The goal is to provide a foundation for efficient and consistent coding
across applications developed in Forte. Adherence to standards and conventions promotes the use of
a consistent “language” between developers — enabling easier and more-cooperative development
and maintenance of software applications. By adhering to a well-understood set of coding and
naming standards, code is more readable and can help in the quality assurance and testing of
developed applications.

Section 2.2.1 addresses the naming of different elements within the Forte environment. Section 2.2.2
lists simple coding conventions that focus on the efficiency and readability of TOOL code. The goals
of these two sections are:

e For all development constructs, to provide names that are both descriptive and concise. In
order to promote readability and maintainability across developers, excessive abbreviations
and symbolic names should generally be avoided.

e To define rules for TOOL grammar, spacing, and punctuation to increase the “flow” and
readability of TOOL methods. Capitalization and naming standards should be designed so
that individual elements of the Forte TOOL language — for example, classes, attributes,
method invocations, and variables — can be easily identified when reading and maintaining
TOOL methods.

e To provide names and conventions that eliminate the need for renaming of Forte elements
during application maintenance and enhancement

e To prevent the improper or inefficient use of Forte TOOL constructs that could contribute to
poor performance and functionality within an application

e To provide a defined coding (TOOL) style to be used throughout the project for handling a
host of development issues and architectures

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards < 2-10

2.2.1 Naming Standards

2211 General Conventions

2.2.1.1.1 Capitalization

The Forte TOOL language elements listed below should be in mixed case with the first letter of each
unique word capitalized:

Element Examples
Workspaces JohnDoe, JohnDoeTest
Projects DomainServices, DomainWindows,

DomainClasses, DomainFrontCounter Classes

Plans
Forte Express Business Models CustomerBM, OrderBM
Forte Express Application Models PurchasingAM, CustomerServiceAM
Classes Employee, Product
Methods GetOrders(), ComputeTotal()
Attributes aName, aStreetAddress, aQuantity
Events eShipmentChanged. eEmployeeFired

Variables declared in TOOL code should be in mixed case with the first letter of the variable name in
uppercase. All variables should include a lowercase “I” prefix.

Examples: INewEmployee, UtemList, |AccountBalance

Declare and refer to constants in uppercase — use (underscore) to separate compound word
names.

Examples: FS_UPDATE, C_MAGENTA, MTJNFO

TOOL keywords — for example, begin, end, for, post — that are used in methods should be in
lowercase.

When declaring variables in method code, reference to object datatypes — TextData,

IntegerNullable, DateTimeData — should be in mixed case with initial capitalization. Scalar
datatypes — string, integer, float — should be in lowercase.

2.2.1.1.2 Use of Abbreviations

Avoid abbreviations where possible — use only in cases where long names are unavoidable. Prefixes
and suffixes clearly defined in naming standards are exceptions to this rule.

All abbreviations should be defined in project documentation.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTUJser Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-11

2.2.1.2 Repository Workshop Elements

2.2.1.2.1 Project

Begin project names with a word that describes the application and that is uniquely identifiable within
the first eight characters. This will enable easy identification of projects in the Repository Workshop
that are related to the same application. Also, because Forte uses the names of projects to generate
partition, directory structure, and runtime repository names, keeping the leading characters ofa
project name unique and descriptive promotes easier management of deployed applications.

Project names should be suffixed with an indication of the classes contained within them — for
example, windows, services, business classes, utilities. Forte Express uses the following default
suffixes when generating code from Business and Application Models:

Project Contents Default Suffix
Business domain and related classes Classes
Service classes and objects Services
Windows and client-based objects Windows

2.2.1.2.2 Business and Application Models (Forte Express)

Business Model names should be noun constructs and describe the primary class or classes included
in the model — for example, Order, Employee, Customer. Because Business Models are primarily
data oriented and can provide the foundation for multiple applications, phrases that describe a
function or application within the business should not be included in Business Model names.

Application Model names should include the name of the Business Model from which they are
generated. Also, each Application Model should include a description of the function or application
area represented by the Application Model.

Projects, Business Models, and Application Models can normally be distinguished from each other
either in the Repository Workshop by the icon associated with the name or by restricting the view of
elements using the filter droplist in the workshop. If developers wish to distinguish between projects
and models using haming conventions, suffixes rather than prefixes should be appended to project
and model names.

Examples: OrderBM, OrderEntryAM, OrderFulfillmentAM
EmployeeBM, EmployeeRecruitingAM, EmployeeBenefitsAM

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTAUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-12

2.2.1.3 Project Workshop Elements

2.2.1.3.1 Classes
All class hames should use nouns or noun phrases.

Business domain classes should describe the “real-world” objects represented by the class.

Examples: Customer, Order, Employee

Service class definitions should be suffixed with “Mgr”’; service objects should be suffixed with
llSO!!\

Service classes that manage the persistence of business domain objects — those that handle the
storage and retrieval of data — should be named according to the primary business domain object
managed by the service.

Examples: CustomerMgr, ProductMgr

Service classes that enforce business policy should be nhamed according to the functions within the
business impacted by the policy. Policy manager classes and service objects should include the word
“Policy” in their names.

Examples: BillingPolicyMgr, HiringPolicyMgr

Window class definitions should be suffixed with “Window” and named according to the use case or
function supported by the view.

Examples: Security TradingWindow, OrderEntryWindow

Classes defined for display purposes that map to compound widgets or display nodes should include
“Display” in their names.

Examples: DepartmentDisplay, LocationDisplayNode

Exception classes should be suffixed with “Exception” and include the name of the class for which
they are defined.

Examples: AddEmployeeException, CreditLimitExceededException

2.2.1.3.2 Cursors

Cursors should be declared with names that describe the data result sets that are retrieved by the
cursor. Also, cursors should be suffixed with the word “Cursor”.

Examples: FetchAllIEmployeesCursor, FetchOrdersByNumberCursor

Constants should be prefaced with a defined character code designating the group or family of
constants to which they belong. Examples of this naming convention are evident in Forte-defined
constant names — FS_DRAGGABLE, MT_INFO. To distinguish user-defined constants from those

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-13

provided in the Forte projects, developers may want to create constant prefixes that are longer than
two characters.

2.2.1.3.3 Domains

Domain names should describe the value set included in the domain and should be suffixed with the
word “Domain”’.

Examples: AnimalDomain, PlantDomain, PrimeNumberDomain

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOT\User Manual\Rev 0.0\Programmers\Chap_2.doc Standards ¢ 2-14

2.2.1.4 Class Workshop Elements

2.2.1.4.1 Attributes

Business domain attributes should be descriptive of their real-world counterparts — for example,
firstName, color, weight.

Pointer attributes (attributes that implement an association between two objects) should be named
according to the role played by the attribute with respect to the object. For example, ifthe definition

ofa class called “Airplane” includes an attribute describing the Person (another class) who flies the
airplane, an appropriate name for the attribute would be “Pilot™.

Attributes that are arrays should be suffixed with the word “List” or “Sets”.

Examples: ComponentList, AddressList, AttendeeSets

Window class attributes (widgets) are described in Section 2.2.1.5, Window and Menu Workshop
Elements.

2.2.1.4.2 Methods

Method names should be created using verb-noun constructs. The “nouns” within a method name
should refer to Forte elements — objects, attributes, events — that are operated upon by the method.

Examples: RefreshWidgets, GetCustomer

Methods should succinctly describe the task to be performed. To avoid confusion about its use, the
behavior of a method should not include functionality beyond what is described by its name.

2.2.1.4.3 Events

Event names should use a noun-verb construct with the verb in past tense.

Examples: UDComplaintFiledEvent, FeePaymentCompletedEvent

Event names should include the object or service name for which the event is posted. Return Events
have the suffix “RE”, Completion Event have suffix “CE”, and Exception Events have suffix “EE”.

2.2.1.4.4 Constants

See Section 2.3.1.5 for a description of naming conventions for constants.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTAUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-15

2.2.1.4.5 Event Handlers

Event Handler names should use a noun-verb construct with the verb in the past tense.

Examples: UDComplaintFiledEventHandler, FeePaymentCompletedEventHandler

Event handler names should include the object or service name for which the event is posted.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTXUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-16

2.2.1.5 Window and Menu Workshop Elements

2.2.1.5.1 Simple and Compound Widgets

Simple widgets within a compound field that map directly to a business domain object must be named
identically to the object’s attributes. For example, widgets within an array field that maps to the
Order class must have identical names to the attributes of the Order class (e.g., OrderlD,
CustomerName, TotalPrice).

Ifa compound field maps directly to an object, then the object name should be included in the
compound field name. Ifthe compound field is used solely to control display characteristics (e.g.,
alignment, visibility or invisibility of child widgets, window nesting), then the compound field should
describe the area of the window in which it is displayed (e.g., ButtonBarGrid, StatusLinePanel).

To provide easy maintenance of windows, widget names should be closely associated with their
displayed labels. Simply put, a pushbutton with a label of “Close” should include the word “Close”

somewhere in its name.

Because many widgets can be converted to different types (e.g., a DropList can be converted to a
FillinField), it is best to avoid including a widget’s type in its name. If developers choose to include
types in the names of widgets that are reasonably static, then it is best to include them as a suffix
rather than a prefix. Common examples of widget-type suffixes include “Btn” for pushbuttons and
“Grid” for gridfields.

Widget Type Prefix Examples

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-17

2.2.1.5.2 Menu Widgets

Menu widget names include the displayed label as part of the name — Copy, Cut, Open, Help.

To distinguish menu widgets from window widgets in the Class Elements list, menu widgets can be
suffixed with an indicator oftheir type (this convention is acceptable for menu widgets because they

cannot be converted between types). A suggested list of suffixes is:

Menu Widget Type Suffix Examples

Menu Menu EditMenu,
FileMenu

Menu command MC PasteMC,
OpenMC

List Item MLI CategoryMLI

Toggle MT ShowRulerMT

Separator SP EditSP

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards « 2-18

2.2.1.6 Method Workshop and TOOL Code Elements

2.2.1.6.1 Method Parameters

Preface parameter names with “p” to differentiate them from attribute or class names in TOOL code.

When passing objects as parameters, the name should provide an indication of the object being
passed. Ifapplicable, the parameter name should also describe the role of the object (e.g.,
pNewEmployee, pChangedOrder).

2.2.1.6.2 Variable Declarations
Variables that represent instantiated objects should describe either the name ofthe class or the role
performed by the variable.
Examples: newEmployee : Employee = new;
purchasedGoods : Array of Orderitem = new;
empLookupWin : EmployeeWindow = new;

Variables for instantiated windows should be suffixed with “Win” to distinguish them from
nonwindow classes.

2.2.1.6.3 Return and Exception Events

Return events defined on methods should follow the standard of “methodname velum”,

Examples: FetchEmployees_return, RunReportreturn

Exception events defined on methods should follow the standard of “methodname_excep\\on”.

Examples: ValidateOrders_exception, CollectProcessData_exception

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-19

2.2.2 TOOL Coding Conventions

2.2.2.1 General Conventions

To promote portability and maintainability, avoid hard-coding names external to the Forte
environment into TOOL code statements, service object configurations, or environment
configurations. Examples include database names or connect strings (use environment variables,
where possible), operating system-specific commands (conditionally check the operating system
environment).

Use Forte constants rather than hard-coded constant values in TOOL code. Place constants at the
appropriate scope — Project, Class, or Method—when defining.

2.2.2.2 Line Length

Limit TOOL code lines to 80 characters or less in the Method Workshop. This prevents excessive
line wrapping when printing method code.

2.2.2.3 Indenting

Indent four spaces for statement blocks; indent two spaces when a line must be broken.

2.2.2.4 Comments

Use /* ... */ for block comments (> 2 lines).

Use // for line comments — this enables user comments to be differentiated from Forte-generated
comments in export files.

Comments should precede code or be included on the same line as the code that they describe.
To document an entire class, create a method with a name of “~-Documentation” and include a block

comment that describes the entire class. The (i.e., the underscore) in the comment method name
causes it to sort close to, or at the top of, the list of class elements.

2.2.25 Method Invocation (Same for events, cursors)

When invoking methods, always include parentheses after the method name, regardless of the
number of parameters passed.

Use named parameters.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-20

Always give the object name with the method — e.g., self.method(), newEmployee.GetSalary().

2.2.2.6 Overloaded Methods

Eliminate the use of default values for overloaded method parameters, because this may lead to
ambiguous invocations of the method.

2.2.2.7 Parameter Passing

Parameters should be referenced by name — rather than by position — when invoking a method.

2.2.2.8 Grammar

Use qualifiers on "“end” statements (e.g., end event, end for, end if).

Use spaces around colons and equal signs to improve code readability.

2.2.2.9 Statement Blocks

Indent nested statement blocks and comment them to indicate why they exist.

2.2.2.10 Transaction Handling

Be aware of dialog duration when coding transaction blocks; assume and strive for message dialog
duration.

2.2.2.11 SQL and Database Conventions

Name database columns in SQL statements explicitly. Avoid the use of in SELECT statements,
to prevent ambiguous or improper mappings of columns to object attributes.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-21

2.3 C Programming Language Coding Standards

This section formally specifies the C coding standards and practices that are to be used in the
development of code for the LMIMS projects. These coding standards have been developed to
ensure a unified appearance ofthe code and associated comments as well as to enhance the overall
maintainability’ of the code throughout its life cycle. Within the context of this section, “shall” is used
to express mandatory provisions, and “should” and “may” are used to express suggested and / or
preferred provisions.

2.3.1 Lexical Elements

The following sections describe the coding standards, practices, and formats for lexical elements.

2.3.1.1 Character Sets

Alphanumeric characters and underscores shall be sufficient to represent any routine name, variable,
or defined constant.

2.3.1.2 Routine Names

The routine name shall be in the following format: <system ID>_<function name>. The <system
ID> prefix should generally be a five-letter prefix that identifies the particular software system. A
single underscore separates the <system ID> prefix from the <function name>.

Example: plfoo_function
Ifan object-oriented approach is taken to naming routines, the <function name> should be composed

ofan <object> prefix and the <function name> separated by two underscores as follows:
<system ID>_<object>_<function name>.

Example: plfoo_object function

Distinct words in the <function name> shall be separated by single underscores:

Examples: plfoo_a_function_name, plfoo_object a_function_name

Routine names shall be limited to a total of 28 characters.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-22

2.3.1.3 Source Code File Names

The name of a file containing one or more C routines shall be the same as the primary routine it
contains with an extension of C.

Each C file shall contain only one routine that is called from routines outside that file. This is the
routine for which the file is named. Ifadditional routines are included in the same file, they shall be
used only within that file and shall not be called by any routine outside that file.

Unless specifically authorized, there shall be one IFDL screen per file, and the file shall have the
same name as the screen with “ FORM” and the extension of .IFDL.

SQLMOD files shall be named in the format TCS_nnn, where nnn is the three-character identifier
assigned to the SQL table to which the SQLMODs apply.

2.3.1.4 Variables

Variable names shall be descriptive. Distinct words in the variable name shall be separated by single
underscores.

Example: foo_indicator
To maintain portability, variable names shall be limited to a total of 3| characters.

Global variable names shall be constructed in a manner similar to routine names as follows:
<system ID>_<variable name> or <system ID>_<object> <variable name>. The <system ID>
prefix will generally be a 5-letter prefix that identifies the software system. A single underscore
separates the <system ID> prefix from the <variable name>.

Examples: plfoo_foo_indicator, plfoo_object foo_indicator

WARNING: Be certain that every variable referenced as “extern” is actually declared globally
(outside of any functions) somewhere in a module that will be linked with the “extern” reference
module. Under VAX / VMS, failure to do so will not yield and error. Instead, the linker will
automatically create a global ofthe same type as the one referenced as “extern.” This situation can
lead to side effects that are very difficult to trace.

2.3.1.5 Defined Constants

Literal constants — defined with the #define precompiler directive — shall be composed of only
uppercase letters, numbers, and underscores. These constants shall be named descriptively.

To avoid confusion, non-unique constants should be qualified within the file in which they are
defined.

Examples: FOOVALUE, PLFOO_FOOVALUE, PLFOO_OBJECT_FOOVALUE

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-23

It is not necessary to use unique constant names among modules, but it will aid in the maintainability
of the code by indicating the probable location of definition.

Constants that must be used among modules should always be qualified with the module name in
which they are defined. This is necessary in order to avoid redefining constants during the
precompilation phase. Constants that are defined in header files for utility libraries are good
examples of possibly non-unique constants.

Commonly defined constants include TRUE, FALSE, ONE, TWO, THREE,..., DEBUG. Qualifying
each of these with the module name will assure you that your constant will not be redefined. The
example below illustrates the problem with multiple definitions of the same constants within the same

compilation unit.
Example: #define ONE (short)l
#define ONE (double)l.O

The constant ONE is now redefined as a double-precision constant
with a value of 1.0.

The constants “VAX” and “UNIX” shall be used with the #ifdef precompiler option to separate
platform-dependent code. These constants are defined by the compiler itself. No attempt shall be

made to redefine them.
Example: #ifdefVAX
statements
#endif
SifdefUNIX
other statement

#endif

The #else precompiler option shall not be used in conjunction with the platform-dependent
compilation sections. In the future, other platforms may be used that may not default to the #else

case.

2.3.1.6 Macros

Macros are a type of defined constant in which argument substitution takes place when the macro is
expanded during precompilation phase.

Macros offer the advantage of making code more readable and maintainable. The disadvantage is
that they expand as code in the module in which they occur, thereby having the effect of repetitious
code (they may increase the size ofthe object module).

Example: #define CHANGE_TO_UPPER_CASE(argl) toupper(argl)

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTAUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-24

Macros should be used only when necessary. In most cases, a routine can be written that is easier to
understand than a macro. The following is an example of macro use that is necessary. The ANSI
standard function for file deletion is “remove.” UNIX implemented this function as “unlink.”
Similarly, DEC implemented this function as “delete.” In these cases, the ANSI standard “remove”
should be used and should be a defined macro that expands to its platform-specific implementation.

Example: #ifdef VAX
#define remove(a) delete(a)

#endif

#ifdefUNIX
#define remove(a) unlink(a)

#endif

2.3.1.7 Banner Comments

A header comment block shall be included for every routine. The comment block is used to identify
the routine, its use, any interfaces, and its change history. Each required section of a banner is
described in the paragraphs following the example below.

Example:
/***
* Title: plfoo_foo

* Do the things that a foo function should do.

*

* Date: 19-May-1989

* Author: M.R. Doe

*

* Summary: This function will convert two single foos

into a double foo. A completion status is also returned.

* Special Considerations:
This functions should not be used for nonfoo conversions.

* |nputs: fool
* used as a prefix.
* foo2

used as a suffix.

* |nput/Output: in_out_foo

* foo that is altered and returned. Input values
* must be positive integers less than 500.
LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTXUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-25

Outputs:

Returns:

Calls:

foo3
foo composed of fool and foo2.

A short int indicating completion status.

plfoo foo_adder
plfoo_foo_formatter

* Called By: plfoo_requester
*

* Globals:

* History:

plfoo_foo_indicator
plfoo_foo_saver

19-May-1989 M.R. Colligan
Initial release

20-May-1989 M.R. Colligan

SDR #123456 Fixed missing EOF problem.

**/

2.3.1.7.1 Title

The routine name as it appears in the code. It shall be followed by a one- or two-line explanation of
the routine that can be easily understood at a glance.

2.3.1.7.2 Date

The date of creation ofthe file in dd-month-yyyy format. This date may not be the date of its initial
release because the routine may undergo several changes before it is actually released.

2.3.1.7.3 Author

Name of the software engineer who coded the routine

2.3.1.7.4 Summary

A short summary ofthe routine from a user’s point of view. Ifit is important for the user to
understand the algorithm that is used in the routine, then that information too shall be included.

Usually, a brief explanation of how and when to use the routine will be enough.

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc

Standards e« 2-26

2.3.1.7.5 Special Considerations

Any specific constraints, conditions, error handling procedures, etc., that should be conveyed to the
user and / or the maintainer should be provided in this section.

2.3.1.7.6 Inputs

A list of formal input parameters as they appear in the code. A description of each parameter —
containing the type and use ofthe parameter— is required. Also, limits shall be expressed here if

they are critical.

2.3.1.7.7 Input/Output

Another option for parameters whose initial values are used and altered by the routine. A description
of each parameter — containing the type and use of the parameter — is required. Also, limits may be
expressed here if they are critical.

2.3.1.7.8 Outputs

A list of formal output parameters as they appear in the code. A description of each parameter —
containing the type and use of the parameter— is required. Also, limits may be expressed here if
they are critical.

2.3.1.7.9 Returns

A description of the type and possible values returned by the routine

2.3.1.7.10 Calls

A list of routines called by the routine. Only routines and system calls need to be listed here. Do not
include C library functions such as “strcpy””.

2.3.1.7.11 Called By

A list of routines that call this particular routine. ‘““Various Routines” is used for common routines
such as date / time conversions. “TBD” is used when the calling routine is not known.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTAUSser ManualXRev 0.0\Programmers\Chap_2.doc Standards ¢ 2-27

2.3.1.7.12 Globals

A list of global variables that are referenced by the routine

2.3.1.7.13 History

The history consists of four pieces of information. The first entry is the release date. This is the date
on which the code is actually released to CM. Again, the format is dd-month-yyyy. Next is the name
ofthe engineer who is responsible for the change as coded.

IMPORTANT: The next line contains the SDR or SCR number for which the code change was
made, followed by a brief description ofthe change(s) made for the SCR. Do not explain why
the change was undertaken or what the problem was before the change.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_00\Programmers\Chap_2.doc Standards ¢ 2-28

2.3.1.8 In-Line Comments

In-line comments shall appear at the right-hand side of the page. These comments should be
delimited by a single set of comment delimiters per lineComments shall not extend past column 80.

Example: Right /* This is a comment that is */

/¢ continued on the next line. */

Do not continue in-line comments from one line to another as in the following “Wrong” example.
Example: Wrong * This is a comment that is

continued on the next line */

To avoid the accidental commenting-out of intermixed code, in-line comments are not continued
between lines. This frequently occurs when a line of code and its comment are deleted. Also, all left
and right comment delimiters shall be aligned vertically as illustrated above.

Comments may not be necessary for every line of code. However, the function shall contain enough
in-line comments to enable the reader to trace the flow of execution from the comments alone.

An in-line comment should accompany each SDR / SCR change and should give the SDR / SCR
number along with a description of the change.

Example: foo = foo value + fudge_factor;
/* SDR #123456 -fudge */
/* factor for precision */

2.3.1.9 Comment Blocks

Avoid using comment blocks as a substitute for in-line comments. A series of good in-line comments
is generally easier to follow. Successive in-line comments can be used to create a narrative of the
code and can be placed at points that may be unclear without the comments.

Functions that require comment blocks to explain separate sections can usually be broken down into
several smaller functions, each having its own banner comment.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e 2-29

2.3.2 Declarations and Types

2.3.2.1 Declarations

Each variable or function declaration shall begin a new line and shall be indented to the same level.
Variables ofthe same type shall be listed on separate lines following the statement of the data type
and must be delimited with commas.

Example: short foo_varl, /* The value of an uncomputed foo. */
foo_var2; /* The value of a computed foo. */
char foo_char;

Variable declarations may contain in-line comments to explain their use or typical values.

Variables that are initialized only once should be initialized in the declaration. Variables that are
continually reset, such as loop counters and flags, should be set with assignment statements.

Constants shall be used in place of variables whose values do not change.

2.3.2.2 Typedefs

Typedefs should be used whenever the data they represent is logically distinct and should not be
mixed in computations. It may also be useful to use typedefs when data must be constrained to a

specific set of values.

Type definitions shall be named with the following format: <system ID>_<type name>_type. This
will enable the reader to more easily recognize the source ofa type when a variable ofthat type is
declared.

To avoid confusion, never name a variable the same as its type. Ifthe previous type naming format is
used, this should not be a problem.
Example: Right foo_color_type foo_color;

Wrong foo_color foo_color;

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-30

2.3.2.3 Enumerated Types

Enumeration-type definitions shall contain a single enumerated value per line, and the enumeration-
type values shall be in capitals.

Example: enum
{
BLUE,
YELLOW,
RED

} foo_primary_color_type;

2.3.2.4 Char Types

Single-character variables shall be assigned only single characters that are specified with single
quotes.

Example: char foo;
Right foo = ‘A’
Wrong foo = “A”
The case marked “Wrong” above will cause unexpected results, depending on the compiler that is

used.

2.3.2.5 Boolean Types

Avoid using the predefined unsigned char values “TRUE” and “FALSE.” It is safer to declare your
own constants or enumerated values than to rely on your interpretation ofthese values.

Example: #define FOO_TRUE 1
#define FOOFALSE 0

2.3.2.6 Integer Types

Short integer types should be used whenever possible as applicable to the specific application. Do
not use integer declarations. Use “long” or “short” types, because integers are not portable.

SCDOT Programmer's Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-31

2.3.2.7 Float Types

Single-precision floating types should be used whenever possible. Double-precision types should be
used whenever accuracy over several calculations is required.

All modules compiled under VAX / VMS shall be compiled with the /G_FLOAT option. G_FLOAT
is an alternate internal representation of the floating type. This is necessary to avoid mixing floating
types, because some third-party software modules used the GJFLOAT representation. When the
G_FLOAT compiler option is used, all “float” variables in the module will be represented in this

format.

2.3.2.8 Arrays
Because C array subscripting begins with “0”, all arrays will be treated as such. Do not begin
subscripting arrays with ““1” — this is confusing from a maintenance point of view and may even
cause some compilers to optimize the first element away.

2.3.2.9 Char Arrays

When working with character arrays, it is important to remember the null byte.

Example: Right char foo_array[l 1];
strcpy(foo_array,“0123456789”);

Wrong char foo_array[10];
strcpy(foo_array,“0123456789”);

2.3.2.10 Structures

Typedefs shall be used for all structures that are instantiated more than once. Structure-type
definition shall contain a single field definition per line.

Example: typedef struct foo_record_type
short field 1,
short field2;
short field3;

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards - 2-32

2.3.3 Names and Expressions

2.3.3.1 Names

Do not attempt to reuse names that are already used by any ofthe C libraries — that is, do not attempt
to name your own function with a standard library name such as “strcpy”.

Do not overload variable names. This involves naming a variable the same as its type. Although
syntactically correct in some cases, doing so may lead to confusion for the compiler and the
maintenance engineer.

2.3.3.2 EXxpressions

In general, parentheses should be used to clarify the precise order of evaluation in any expression
where the order may be unclear to a reader even if C does not require the parentheses to achieve the

desired order.

2.3.3.3 Operators and Expressions

Parentheses shall be used to clarify the precise order of evaluation in any expression where two or
more operators — logical or mathematical — are used, unless they are all the same operator or have
the same level of precedence.

Example: A+B*C shall be codedas A+ (B * C)

A+B-C is ok, because both operators are at the same precedence level

2.3.3.4 Type Conversions

Explicit type conversions shall be used wherever the result ofan operation is unclear and wherever
the operands are of different types. Do not assume the correctness of any automatic type conversion

where operands are of different types.

Example: short int A;
float B;
float C;
Right C = (float)A * B;
C = (float)A * (float)2; or C = (float)(A * 2)

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTVUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-33

Wrong C=A*B,;
C+ A*2;

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-34

2.34 Memory

2.3.4.1 Dynamic Storage

All dynamically allocated storage shall be freed when it is no longer used. Do not leave memory
deallocation to handled by process completion.

2.3.4.2 Static Storage

Static variables should be used only when the value of a variable must be maintained throughout
execution ofa program and the variable is not referenced by any other routine, function, or block of
code.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-35

2.3.5 Statements

Statements shall not extend beyond column 80.

2.3.5.1 If Statements
An “if statement with multiple “else if' conditions should be used only where a “switch” statement

would not be applicable. “If, else if, else” is an acceptable construct. If further cases are necessary,
use a “switch” statement.

2.3.5.2 Compound If/ Else Statements

Nested “if and “else” statements shall always be enclosed in braces to prevent confusion, even if
they are syntactically correct without them. The following example demonstrates the confusion that

can occur.
Example: Right if (condition 1)
{
if (condition2)
{
statement 1;
}
else
{
statement2;
}
}
else
{
statements;
1

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOBUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-36

Wrong if (conditionl)
if (condition2)
statement 1,
else

statement?2;
else

statements;

Notice that in the second case — the “Wrong” case — we rely on information of the first “else” to
show that it belongs with the second “if’. The first case is clear even without indentation.

2.3.5.3 Structured Statements and the Use of Braces

Braces shall appear on a line by themselves and shall be aligned vertically with the structure that they
enclose. Do not indent braces from the current indentation level.

Example: Right while (condition)
{
statement 1;
statement?2;

if (condition)
{
statement 1;

statement?2;

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-37

Wrong while (condition){
statement 1;

statement2;

if (condition)
{
statement 1;

statement?2;

}

2.3.5.4 Case Statements

"Case / break” options that appear in a “switch” construct shall be vertically aligned and shall use
braces to enclose all statements within each ‘case / break” construct.

Use “fall / through” case options only when necessary. Ifused, be sure to comment them clearly,
describing why they are being used (see example after next paragraph.).

Every switch shall have a default case, even if it contains no statements. The default case should be
documented to explain the action taken. Generally, the default case will be used for the error
condition or the general condition.

Example: switch (expression)
{

case 0:

{
statement1;

}

break;

case 1.

{
statement 1;
statement2;

}

LOCKHEED MAR

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e 2-38

case 2: /* case 1 falls into case 2 */

/* for further processing */
statement 1,
statement?;
}
break;
default: /* no action taken if */
break; /* expression is not recognized */

2.3.5.5 Loop Statements

Looping constructs — e.g., while, for — shall have a clear test condition for termination of the loop.
Whenever possible, do not use abnormal conditions such as “exit”, “return”, or “break” statements to

terminate a loop.
If the logical expression for loop termination contains several individual expressions, use parentheses
and separate lines to enhance readability ofthe many individual conditions.
Example: while (((condition! && condition2) ||
(conditions && condition-!)) &&
(conditions && condition6))

statement 1;

statement?2;
}

It is a good idea to not use long, complex test conditions because the net value ofthe expression may
be difficult to determine for someone attempting to debug the code. If intermediary expressions can
be computed and stored in test variables, the readability is enhanced and the net expression value can

be readily examined.

Example: loop_testl = 1;
loop_test2 = 1;
loop_test3 = 0;

while ((loop_testl || loop_test?) && loop_test3)

{

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards < 2-39

loop_testl = condition! && condition2;
loop_test2 = condition3 && condition4;
loop_test3 = condition5 && condition6;

2.3.5.6 Return Statements

There shall be only one normal exit point in a function. This point shall be the last line of the
function and shall contain a “return” statement. Return values shall be used for all types of functions,
except those that are declared as “void”.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-40

2.3.6 Functions

Modules

There shall be no more than one logical function per file. A file may contain more than one routine if
all routines are logically related and only one routine is referenced externally. Therefore, there
should be no more than one logical function per object module. There are some rare cases when
multiple functions are required in a single object module. An example is the database access module,
which is a collection of all database access functions. In this case, the individual source files may be
concatenated prior to compilation.

2.3.6.2 Return Values

All functions that are not declared as “void” shall return a value for which they are declared.

2.3.6.3 Formal Parameters

Only scalar values shall be passed by value. All structures and arrays shall be passed by reference.

Remember, the name of an array is equivalent to its address. Therefore, it is rarely necessary to pass
the address of the array name.

Example: char foo_array[l00J;

status = plfoo_foo_func(foo_array);

The exception occurs when the array is allocated by the function and returned as an output parameter.
Example: char *foo_array;

status = plfoo_foo_func(&foo_array);

Structures are always passed by reference. This is especially important when the structure contains a
large amount of data, in which case passing it by value may overflow the call stack.

Example: foo_struc_type foo_struct;
Right status = plfoo_foo_func(&foo_struct);
Wrong status = plfoo_foo_func(foo_struc);

In the case marked “Wrong” above, the contents of foo_struc will be copied onto the call stack. If
foo_struc were a large data structure — for example, a 1000-element array — the call stack would
overflow and kill the process.

Never return the address of a variable that is declared locally. You may not assume that the local
memory is static.

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-41

Avoid using a pointer to store nonaddress data. Consider this example:

Example: short plfoo_foo_func(foo_char)
char *foo_char;
{

foo char = “foo”’;

retum(O);
}

The variable “foo_char” will point to a copy ofthe string in the program’s static area when the
function returns. Although this causes no problems, it demonstrates fuzzy thinking and could easily
be implemented as in this example:

Example: short plfoo_foo_func(foo_char)
char *foo_char;
{

strcpy(foo_char,“foo”);

retum(O);
}

This time, the character string “foo” is copied into the memory location specified by foo_char rather
than into foo_char itself. Alternately, memory could have been allocated for the string as in this

example:
Example: short plfoo_foo_func(foo_char)
char *foo_char;
{

foo char = malloc(4);
strcpy(foo_char,“foo”);

retum(O);
}

This is a viable solution, providing that the calling function remembers to free the memory when it is
finished with it.

2.3.6.4 Formal Parameter Names

Overloading of parameter names is no longer allowed under VMS 5.1. Therefore, do not name
parameters the same as their type names. This will not be a problem ifall other coding standards are
followed.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-42

2.3.6.5 Function Length

Functions should contain no more than 50 executable statements (function calls, loops, assignment
statements, and logical constructs). Of course, this is a rough limit, but it reflects the goal of limiting
the scope and functionality of functions. There are obvious exceptions to this rule — dispatch
routines and 1/O-intensive routines often require a large number of statements to complete a single
task. A dispatch routine, for instance, may contain a “switch” statement that contains hundreds of
cases. This would be an allowable exception.

2.3.6.6 Function Calls

Each argument to a function in a function call should be placed on a separate line, ifthe clarity ofthe
program is improved.

2.3.6.7 Function Arguments

Avoid using long expressions as arguments in function calls. It is generally more clear to assign the
value of an expression to a variable and pass the value of the variable instead. This also makes it
easier to examine the values of all arguments to a function in the debugger. For the same reason,
avoid using functions as arguments to other functions. Again, if possible, assign the value of the
function to a variable that can be passed by a value to the called function.

Example:
Right
status = plfoo_foo_func(foo_inputl,
foo_input2,
&foo_outputl,
&foo_output?);
Wrong

status = plfoo_foo_func(((2.0/FOO_CONSTANT*foo_value) | (foo_value?)),
plfoo_foo_func2(2.0, foo_valuel),
&foo_struc + foo_offset,
&(foo_array[16 + foo_valuel]));
Avoid passing global variables by reference. A function should not expect a parameter that

references a particular global variable every time that it is called. Instead, eliminate the parameter
and reference the global as an extern within the function.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-43

2.3.6.8 Overloading Functions

Function shall not be named in such a way as to cause overloading of other user functions or standard
library functions. An example would be a user function called “atoi” (ascii to integer) that would
overload the standard library function, “atoi”.

2.3.6.9 Exit Function

“Exit” functions shall be used only when an exception occurs and the program wishes to abort with a
specific error condition set.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-44

2.3.7 System Calls and Library Use

2.3.7.1 Sleep Statements and Polling

Whenever possible, avoid using “sleep” calls to create time delays. However, sleep cycles are a
preference to busy waits and polling for event completion. Polling for an event in a tight loop is
extremely expensive in terms of resources and will generally affect all other active processes. The
use of ASTs (Asynchronous System Traps) is discouraged, because the same functionality is not
necessarily available on all systems.

2.3.7.2 Use of System Services

System services should be used only by utility library functions. When system services are
necessary, try to use UNIX or UNIX-like system calls. For instance, directory creation accomplished
under UNIX with the “mkdir” function may also be done under VMS with the same “shell”
command. Always attempt to use these UNIX-like system calls wherever they are available. See
“Programming in VAX C” for a list of UNIX-like supported functions.

2.3.7.3 Use of “system”

Avoid using the “system” command to accomplish tasks for which there are alternatives. The
“system” call will spawn a process to execute the command specified as its parameter(s). This is
very expensive in terms of resources and time. In many cases, there is a standard library function
available that will do exactly the same thing. Consult any ANSI C programming guide for a list of
such functions.

2.3.7.4 Use of non-ANSI C Functions

Avoid using C library functions that are not supported as an ANSI standard. As an example, take the
ANSI standard function for file deletion, “remove”. VAX /VMS offers a function called “delete”
that accomplishes the same thing. Likewise, APOLLO offers a function called “unlink”. Neither of
these functions is ANSI standard. The correct solution to this challenge was described earlier in
section 2.3.1.5, “Defined Constants.”

2.3.7.5 Shared User Library Functions

Functions that are included in shared user libraries should not contain callbacks. This means that any
function contained within a library should not call any user functions (or reference any user globals)
that are not contained within the same library.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards e« 2-45

2.3.8 Input-Output

2.3.8.1 Include Files

Include files shall not be nested beyond one level.

Contents of System ID / library include files shall be divided so that there are separate include files
for public and private inclusion. Declarations that are used exclusively by the System ID / library (or
by an object) should be separate from any declarations that must be included in any other System ID /
library (or object).

The format for naming public include files is:
<system ID>_<object> p<func | type | spec.h
or

<system 1D>_p<func | type | spec.h

For private include files, use:
<system ID> <object> <func | type | spec.h
or

<system ID>_<func | type | spec.h

Example: plfoo_func.h
plfoo_type.h
plfoo_spec.h
plfoo_pfunc.h
plfoo_ptype.h
plfoo_spec.h

2.3.8.1.1 pfunc.h
The *“func.h” file shall contain public function declarations that are “ifdef-ed” in such a way as to
declare each function externally in every module except the one in which it is actually declared.
Example: #ifndef RTN_plfoo_foo_function
extern short plfoo_foo_function();
#endif

By defining the constant RTN_plfoo_foo_function at the beginning of the plfoo_foo_function file,
and undefining it at the end of the file, the external declaration of the function will not be made in the

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTAUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards e 2-46

function’s module when it is compiled. All other flies that include this “func.h” file will contain the
external function definition when they are compiled.

2.3.8.1.2 func.h

The same can be said for the “pfunc.h” file, except that it shall contain all of the private function
declarations in the same format as in the example above. The “pfunc.h” file should not be included
by functions that do not have access to private functions — that is, the functions listed in the pfunc.h
file are not exported.

2.3.8.1.3 ptype.h
All type definitions and defined constants that are public (exported) shall appear in this file.

Globals shall be defined and shall be externally referenced in this file. This can be done with the use
of #ifdefs similar to the declaration of functions in “func.h”. First, select a function that will always
be included in an executable. Ifno such function exists, create one that will act as a dummy. Then,

inside “type.h”, arrange the declarations as they appear in this example:

Example: tfifdef RTN_plfoo_foo_function
short plfoo_fooindicator = 0;
long plfoo_foo_var = 0;
#else
extern short plfoo_fooindicator;
extern long plfoo_foo_var;

#endif
This will cause the global variables to be defined globally once within the plfoo_foo_function’s
module — not defined within the plfoo_foo_function itself because the include statement appears

before the function declaration — and to be externally referenced for all other modules that include
the type.h file.

2.3.8.1.4 type.h

Private type definitions and defined constants should appear in this file.

2.3.8.1.5 pspec.h

This file is used to include the “func.h” and “type.h” files, as well as any other public files that may
exist for the specified object / system 1D / library.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTtUser Manual\Rev_0.0\Programmers\Chap_2.doc Standards e 2-47

2.3.8.1.6 spec.h

This file is used to include the “pfunc.h” and “ptype.h” files, the “spec.h” file, and any other private
files that may exist for the specified object / system ID / library. It is necessary to include the
“spec.h” file in order to pick up all definables related to the tool.

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards - 2-48

2.3.8.2 Common Files and Functions

2.3.8.2.1 C Include Files

The system will use the following C include files in the TCSSREF directory:

DB.H contains database definitions

FORM.H contains form definitions

FORM_CNTRL.H contains form definitions

FUNC.H contains public function prototypes

GLOBAL.H contains global variable definitions

MENU.H contains form definitions

MSG.H contains message definitions

DMQ.H contains all DECmessageQ definitions and types
PUBTYPE.H contains CDD / Plus and general type definitions
SCTRTYPE.H service center data types

SADM_TYPE.H system administration data types
HOST_TYPE.H host data types

VIOLTYPE.H violation data types

SUPV_TYPE.H supervisor data types

Also, each C form processing module will use an include file for DECforms record descriptors in the
format ‘module name’_BUF.H.

2.3.8.2.2 Common C Functions

The system will use the following common C functions:

e TCS_ACCESS CNTRL.C Provides menu access control

e TCS_DAYS DIFF.C Calculates the difference, in days,
between two VMS dates

e TCS DB FETCH_MEA.C Retrieves many menu actioning
rows

e TCS DB GET EMA.C Retrieves one employee access
row

e TCSDBGETJLOGON.C Retrieves all login-specific rows, terminal

definitions, system parameters, and employee 1Ds

LOCKHEED MAHTIN.™

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTtUser Manual\Rev 0.0\Programmers\Chap_2.doc Standards - 2-49

- TCS_DB_GET_SCR.C
« TCS_DB_GET_TAG.C

 TCS_ERR_LOGGER.C

« TCS_ERR_SIGNAL.C

« TCS_FRM_AST _DATE_TIME.C

« TCS_FRM_DATE_TIME.C

«+ TCS_FRM_CHK.C

« TCS_FRM_CLOSE.C

+ TCS_FRM_HEAD_FOOT.C
+ TCS_FRMJNIT.C

« TCS_FRM_IO.C
+ TCSIJFRMJNIT
+ TCSIJFRM_MSG.C

« TCS_FRM_OPEN.C
« TCS_FRM_OUT.C

- TCS_FRM_SET_TIMER.C
« TCS_FRM_TERM.C

« TCS_GET_MSG.C

* TCS_GET_PROCESS.C

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTAUser Manual\Rev 0.0\Programmers\Chap_2.doc

Retrieves one screen titles row

Retrieves one tag from the
database

Appends an error message to the
end ofthe system error log file

Signals a function return error,
and stops program execution

Displays the form dynamic
date / time in AST mode

Dispatched dynamic date / time
routines

Checks the status of each internal ‘TCSSFRM...’
form call. A failure will broadcast a message to the

terminal through SYSSBRKTHRU
Closes a DECforms form window

Retrieves and displays all form header

Opens (enables) a main form with the following:

—~Enables an AST and non-AST session

—Starts the dynamic date / time AST

—Retrieves a screen title row from the
database

—Gets menu action rows for a menu screen

—Displays the facility name from the user
global area

—Retrieves and displays up to two footer
messages from the message file

Performs DECforms form input / output
TCS_FRM_OPEN must precede this

Displays a DECforms message.
—Uses the from send response to solicit
user acknowledgment

Opens a DECforms form window.
Performs DECforms form output only
Sets a timer for dynamic update of forms
Closes a DECforms main form

Retrieves message text based on the message
code from MSG.H

Retrieves VMS user name, terminal 1D, port,
and node info

Standards < 2-50

* TCS_PAD_STRING.C

» TCSRPTDATE.C

* TCS_VERIFY_LOGON.C

2.3.8.2.3 Common IFDL Functions

« TCS_DUAL_MENU.IFDL

» TCS_MENU.IFDL

2.3.8.2.4 Common SQLMOD Functions

« TCSJEMA.SQLMOD
« TCS_EMP.SQLMOD
- TCS_MEA.SQLMOD
« TCS_SYS.SQLMOD
« TCS_TER.SQLMOD
« TCS_SCR.SQLMOD

Copies a source string to a target string
padding with spaces to the specified target size

Returns the current date / time for reports in
the format ‘DD-MMM-YYYY HH:MM:SS’.

Dispatches logon verifications

Double-width menu template with a dynamic
date and time

Single-width menu template with a dynamic
date and time

Contains all employee access SQLMODS
Contains all employee ID access SQLMODS
Contains all menuing action SQLMODS
Contains all system parameter SQLMODS
Contains all terminal definition SQLMODS
Contains all screen title SQLMODS

NOTE: Additional common functions will be identified and implemented as

necessary.

The naming conventions for all other types of files should be agreed upon by the LMIMS Software

Manager.

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC DOTVUser Manual\Rev_0.0\Programmers\Chap_2.doc

Standards ¢ 2-51

2.3.9

Coding Example

The following example illustrates some ofthe C coding standards and practices discussed in the

preceding paragraphs. Note that this example illustrates a VAX environment.

#define RTN_plfoo_foo_function

/***

*

*

*

Title:

Date:
Author:

Summary:

plfoo foo function
Checks input values for critical values.

19-May-1989

M.R. Doe

This function tests three inputs for critical

values. A new value is returned through the in / out

parameter while a combination ofthe inputs is
returned through the output parameter.

Special Considerations:
This program was not designed to work on the XYZ Project.

Inputs:

Input/Output:

Outputs:

Returns:
Calls:
Called By:

Globals:

History:

fool
test condition for positive status

foo2
test condition for negative status

in_out_foo

foo that is altered and returned. Input values

must be positive integers less than 500.

foo3
composed of fool and foo2

A short int indicating completion status
plfoo_foo_adder
plfoo_foo_requester *NOTE !

plfoo foo_indicator
plfoo_foo_saver

19-May-1989 M.R. Doe
Initial release

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc

Standards e« 2-52

20-May-1989 M.R. Doe

SDR #123456
* Return bad status if either input does
* not fall within critical bounds.

***************************/

#include <stdio.h>
~include “plexus_ui.h”
#include “plfoo_pspec.h”
#include “grfoo_spec.h”
short plfoo_foo_function(short fool,
short foo2,
short *in_out_foo,
long *f003)
{
extern short int plfoo_foo_indicator;
short local_status; /* @ status of | */
short local_foo; I* indicates success */

if ((fool > 0) && (foo2 <0))

{ I* if both input flags fall */
I* within critical boundaries */

if ((*in_out_foo > 0) && (*in_out_foo < 500))

{ I* ifin out_foo falls within */
localstatus = 1 ; 1* boundaries...return max */
in_out_foo = 500 ; I value and good status */

else /* else return min value and */

{ I* bad status */

local status = 0;

*in out foo = 0;
} I* output flag is sum of inputs */
*foo3 = plfoo foo_adder(foo 1, foo2);

plfoo foo indicator = *in out foo;

T I save setting for */
} 1* future use else output is */
else I* difference of inputs */

local_foo = -foo2;
*foo3 = plfoo_foo_adder(fool,

local foo);
local status = 0; I* SDR# 123456 - return bad */
} I* status */
retum(local_status); 1* return status */

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_2.doc Standards ¢ 2-53

}
#undef RTN_plfoo_foo_function

NOTE 1 “Called by” shall be “TBD” when the auxiliary routine has not been written, and it
shall be “Various Routines” for common modules that are called by many routines.

LOCKHEED

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC DOTtUser ManualtRev 0.0\Programmers\Chap_2.doc Standards < 2-54

3. Procedures

3. Procedures

3.1 Design Review Objectives

The objectives of the Design Review are to:

1. Ensure that the specified design is sound and is traceable to system requirements

2. Ensure that the design will meet the specified design and reliability requirements

Ensure that the risks are identified and that the attained status of the design

justifies commitment of program resources to the next phase

4. Ensure that engineering documentation is complete, accurate, and technically
adequate

5. Ensure that the design is producible, testable, and maintainable

6. Define action items necessary to resolve any design deficiencies found during
review

7. Report on the productivity of the engineering processes used on the program via
metrics

8. Ensure that design artifacts are available, presentable, and in detail sufficient to
assess the design

w

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures « 3-1
Proprietary Data

3.2 Review Responsibilities

3.21 The Chief Technical Officer

LOCKHEED MAR

The Chief Technical Officer may delegate whole categories of internal reviews —
for example, code walkthroughs — to engineering staff, as appropriate. For external,
internal, and Design Adequacy Assessments (DAA) reviews, the Chief Technical

Officer will:

1. ldentify the designs that shall be reviewed

2. Together with the Engineering Manager and the ERB, schedule the reviews,
consistent with program schedule and technical requirements

3. Select the Chairperson for internal reviews and DAAs

4. ldentify each ofthe supporting groups that will need to contribute to the
review — and communicate this to the Chairperson

5. ldentify and define any special problem areas, consultants, and specialists —
and communicate this information to the Chairperson — so that a
satisfactory Design Review Agenda, Data Package, and Checklists may be
issued

6. Participate in the review and assessment of the topics being evaluated

7. Assign action items for internal reviews and DAAsS

8. Ensure that each action item commitment consists of a description ofthe
committed action, the name and organization of the person responsible for its
completion, and the required completion date

9. Transmit Action Item updates to the Chairperson for inclusion into the
Design Review Status Report

10. Be the final authority for the closure of Action Items

11. Ensure that the productivity of the engineering process is assessed via
metrics

12. Ensure that the design specifics that have been presented prove that the

design under review is adequate

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures ¢ 3-2

Proprietary Data

3.2.2 The Program Management

For external reviews, the Program Manager will:

1. Together with the Chief Technical Officer, the Engineering Manager, the

design review Chairperson, and the ERB, schedule the reviews consistent
with program schedule and technical requirements; and determine the
review cost budgets

. Ensure that provisions are incorporated into the Proposal, PDP, Master

Milestone Schedule, and Program Directives for the timely performance
ofthe design reviews

3. Determine the customer level of participation in the Review

3.2.3 Review Coordinator

The Design Review Chairperson will:

LOCKHEED MARTIN

. At the direction ofthe Chief Technical Officer, select — or develop, as

necessary — a checklist that defines the topics to be discussed at the
design review

. With the concurrence of the Chief Technical Officer, select members of

the review board. Participation must be sufficient to thoroughly address
all checklist topics and must address the Chief Technical Officer’s
requests for consultants and specialists.

Prepare and issue the agenda and data package
Schedule the meeting room and provide support equipment

Make arrangements for chairing and recording the Design Review
Meeting; and prepare and distribute the Design Review Report

. Establish an Action Item plan, including responsibility, need dates,

reporting, and closure mechanisms

. Track all action items and report status to the ERB for its monthly report

on action item status

. Archive all design review materials

Prepare appropriate design review summary reports

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures ¢ 3-3

Proprietary Data

3.2.4 The Design Engineer

The design engineer will:

1. Provide the data package to the Chairperson at least 3 (nominal) working
days prior to review date

2. Present the requirements, design approach, appropriate design
artifacts/evidence, and development plans and solutions at the Design

Review Meeting

3. Select and utilize other presenters, as necessary, to ensure a complete and
understandable design disclosure

4. Present appropriate additional data and information not called for in the
data package

5. Accept and coordinate responses for action items and recommendations
in a timely fashion, nominally 5 working days

6. Request that ad hoc internal design reviews be scheduled by the Chief
Technical Officer when necessary

3.25 Engineering Review Board (ERB)

The ERB Members will:

1. Ensure that an adequately rigorous program of internal reviews and
DAAs is planned and implemented

2. Attend scheduled meetings that they have been invited to

3. Prepare for the Design Review by studying the Data Package and other
pertinent material

4. Make recommendations for action; and provide consultation prior to,
during, and after the Design Review meeting

5. Assess the adequacy ofthe design

6. Grade the design for overall thoroughness and for selected checklist
topics

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures « 3-4
Proprietary Data

3.3 Review Process

3.3.1 Design Review Preparation
A flow diagram ofthe review preparation activities is shown in Figure 3-1.

HPUTS PROCESS STEPS OUTPUTS

OCF ENCMEF; iFNFOfEOU FEUEWF

Ftf
EETEFHM FEUEWF TO EE KEO HAFTEF; HEEFTEW
FEIECT EEFEW TO EE FEUIWED FCRfEOLE
FETFCHEOEE AMDEUKET
FftESH EEUEECF («E ENCMER
MINT HAN |J<«)
MAFTTS MIEFTONE FEUEWF FCREECE
F{MEORE UEFSUF FFXKEAH FEEOF
NO [CiC? EEFICX ENO;
FEAEN FCC; CHEF_ENCE;, FN
FEUEW ECAFEI
WOREFEW NTCTEF FEUEUJ
FEEECTF CHOUFTF
FEEECTF FEUEWEFS FECOEFT KF;
OJTIMF ANDKOUEFTF eatA fakace
DATA FAOCACE (NEIU
EIFTFj

r

EEFKN ENOEER
FFEFAFEF DATA FACEACE

DATA FA(TACE

CEFIFEtFSCN
NOT FEUEWF hr

EEHHETE OHFtETE-

Figure 3-1 Review Preparation Activities

1. During the planning phase of each new development program, the Chief
Technical Officer shall develop, define, and integrate a comprehensive
plan for design reviews as required by the Program and based on this
Procedure.

LOCKHEED MAR

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures ¢ 3-5
Proprietary Data

LOCKHEED MAR

10.

After program start, the master schedule of design reviews for the
program shall be maintained by the Engineering Review Board (ERB).
The ERB shall schedule and conduct the design reviews in accordance
with the program plan and the requirements of this Procedure. The ERB
may delegate this authority for reviews of limited scope and context, e.g.,
code walkthroughs. Requests to schedule additional design reviews shall
be made to the ERB at least 2 weeks in advance ofthe review.

The ERB shall have the authority to schedule unplanned but necessary
reviews, dispense with planned but unnecessary reviews, or rearrange
review schedules, within constraints of the engineering budget.

The Chief Technical Officer shall designate a Chairperson for each
design review and may recommend independent internal reviewers who
are not actively involved with the design review.

The Design Review Chairperson shall determine the facilities, materials,
and participants needed and shall issue notification of the review
including a preliminary agenda.

The data package contents shall be specified by the Chairperson and shall
be concurred with by the Chief Technical Officer. It shall include a
checklist of review topics as appropriate to the equipment or system
under review. Other topics may be added to satisfy contractual
requirements if internal and contractual design reviews are combined.

The responsible design engineers shall prepare the design review data
package containing supporting data for the topics specified. Five working
days (nominal) prior to the review, the design engineers will provide to
the chairperson a complete Design Review Data Package.

When the Chairperson determines that it meets requirements, the Package
and the design review agenda shall be distributed — at least 3 working
days prior to the review — to the ERB and other reviewers invited by the
ERB.

The Package shall provide the level of detail that enables each participant
to become familiar with the related design in advance of the review. This
will ensure a constructive and comprehensive review and will maximize
each participant’s contributions.

The Chairperson shall defer the scheduled Design Review when, in
his/her opinion after review ofthe Data Package, the existing information
does not meet the objectives of the review. The design engineers and the
Chief Technical Officer will be notified of such action. After deficiencies
in the Data Packages have been corrected, the review will be rescheduled.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures « 3-6

Proprietary Data

3.3.2 Design Review Content

A design review will be a coordinated review of an engineering product to ensure
that it meets a previously established set of product requirements — including those
associated with functionality; performance; cost; producibility; testability;
operability; maintainability; and environment, health, and safety. Generally, design
reviews are of two types:

3.3.21 External (Program) Design Reviews

These reviews are contractually required by the procuring agency or customer.
They generally focus on the total product design, directed by the Program
Manager, and they represent major program milestones. The reviewers are a
broad audience of customers, co-contractors, and users. They generally do not
permit a detailed review of design compliance with requirements. Program
Design Reviews are not the subject of this Procedure.

3.3.2.2 Internal Design Reviews

These reviews focus on whether an engineering product satisfies a previously
established set of requirements and on the productivity of the engineering
process via metrics. The reviews generally focus on an element of the product
design — compliant with this Procedure, directed by the Chief Technical Officer
— with timing flexible enough to respond to shifts in design status. Engineering
performance against cost and schedule commitments will also be a topic of these
reviews. The reviewers are a small group of engineers who have knowledge of
the item under review. These design reviews should complement and support the
Program Design Reviews.

3.3.2.3 Design Adequacy Assessment (DAA)

The DAA process consists of these seven steps:

1. Validation of design process — Review the methods and procedures
used during the design phase and ensure that they were followed.
Deviations from procedures should be reviewed for risk to the program if
procedures were eliminated and/or modified.

2. Validation of requirements — Review the requirements baseline to
ensure that it is stable enough to proceed without major risk to the
program.

3. Validation of design

LOCKHEED MARTI

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures ¢ 3-7
Proprietary Data

¢ Review documentation of mission scenarios, design threads, modes
of operation, allocated requirements, COTS integration, and
component-to-component interface definitions.

e Review design documentation and results from analysis, traceability,
models, simulation, and prototypes to evaluate the optimization,
correlation, completeness, and risks associated with the allocated
technical requirements and the design.

e Review design information for completeness, validation techniques,
and adequacy (will it work?).

4. Validation of production environment — Review the production
environment to ensure that the environment supports the required level
of production efficiency.

5. Validation of test and integration plans — Review the test and
integration plans to ensure that requirements will be verified and that a
plan to integrate the components exists prior to system test.

6. Assessment of risk — Quantify the risk of moving to the next phase with
open requirement and/or design issues.

7. Action plan — Develop an action plan to correct requirements, design,
test, and integration deficiencies that must be mitigated to an acceptable
level ofrisk to proceed.

The design review agenda will contain a formal announcement distributed by the
Design Review Chairperson to the ERB members at least 5 working days prior to the
review. The announcement identifies:

1. Purpose, definition, objective, and scope of the review
Schedule and place ofthe design review meeting

Participants — presenters, reviewers, subcontractors, others

A won

Any meeting agenda details — items and activities to be evaluated

A design review data package will be a set of review materials that have been
requested by the Chairperson and assembled by the design engineers. Ten working
days prior to the scheduled Review, the design engineer will distribute the data
package to the Chairperson, who addresses all topics and unique checklist items.
The data package shall be reviewed by the Chairperson and, if sufficient, will be
distributed to the Board along with the Design Review Agenda at least 5 working
days prior to the review.

LOCKHEED MARTIN

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures « 3-8
Proprietary Data

3.3.3

Conducting The Design Review

A flow diagram for conducting the design review is shown in Figure 3-2.

1. Members ofthe ERB and other reviewers shall thoroughly study all

materials included in the data package prior to the design review meeting.
Questions may be addressed directly to the Engineering group responsible
for the preparation of the material prior to the date of presentation. Such
guestions and pre-review discussions are encouraged to enable
clarifications, additions, or corrections to be made prior to the review

presentation.

. The Chairperson for each review shall have overall authority to conduct

the review. With the support of the design reviewers, the Chairperson
shall conduct the review so that the prescribed topics are adequately
addressed and so that any required follow-up is identified by a formal
Action Item that assigns responsibility and establishes a planned
completion date. The design engineers will present and discuss the

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc
Proprietary Data

Procedures « 3-9

LOCKHEED MAR

material — consisting primarily of the Data Package — that is to be
reviewed

When appropriate, a demonstration ofthe actual performance ofthe
design will be conducted. The ERB members will review the design
using the design review checklists to ensure that the design will perform
its intended functions reliably and economically.

The Chairperson shall maintain a record of the significant concerns
discussed and shall request written statements of concern and requests for
action from participants, using the Action Item form. At the end ofthe
design review meeting, the Chairperson shall read all the forms and shall
determine appropriate disposition as formal Action Items.

Action Item due dates shall be assigned by the Chairperson to support
program schedule requirements. The Program Manager or designee shall
be present during disposition of action items to ensure that additional
work requested is within the scope of the program. Action Items require
formal written responses and are maintained by the Chairperson.

The Chairperson shall ensure that, prior to adjournment, all immediate
concerns about the design adequacy raised during the review have been
resolved or identified as action items.

3. The design under review shall be graded by the ERB for overall

completeness and selected checklist topics as follows:

Adequate — The design is adequate when the review team believes,
based on the information presented, that the design meets its
performance- and nonperformance-related requirements and,
therefore, will perform as intended.

Conditionally adequate — The design or evidence of design is
presently inadequate, but the review team believes that it can be
made adequate by completion of specified action items.

Inadequate — The design or evidence of design is inadequate when
the review team believes, from the information presented, that the
design does not meet its requirements and, therefore, will require
substantial redesign, or that an assessment cannot be made because
of missing or incomplete design evidence.

The Chairperson shall prepare the Design Review Report within 10
working days ofthe review and shall issue it to the Program Manager,
Chief Technical Officer, ail the review participants, and other personnel
involved in the design review, as appropriate. If issues are identified
whose resolution exceeds the charter of the Board (i.e., issues affecting
contract scope), the Chairperson is responsible for bringing these to the
attention of the Chief Technical Officer and/or the Engineering Manager.

A copy ofthe report is to be retained in the ERB’s archives and in the
Design Engineer’s design record file.

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures « 3-10

Proprietary Data

3.4 Design Reviews

3.4.1 Purpose

This procedure establishes the requirements for planning and conducting design
reviews for systems and software. This section addresses internal reviews — an
integral part ofthe design process held without the customers present. The
primary goals of the internal reviews are to discover, understand, and mitigate
technical issues and risks and/or to communicate the results of thought and
analysis to other personnel to achieve a common understanding of the overall
system under review.

3.4.2 Scope

This procedure applies to all programs conducted by Engineering. Design
reviews shall be planned for, and conducted on, new or modified engineering
designs of systems, subsystems, components, etc., to ensure that each design
meets the requirements of the applicable program(s) and that each adheres to the
established design standards.

3.4.2.1 Design Review Checklist

Design Review Checklist

1. Are the design objectives clearly stated?

2. Has attention been paid to the usability of the user interface? Have the users been
involved in that decision?

3. Are there models for all critical parts of the system?

4. Have interfaces to other portions of the system been considered, and has the
impact of the current feature on other parts of the system been addressed in the
design?

5. Is there a high-level functional model of the system?

6. Is there an operational description?

7. Is there an explanation of the test procedure, test cases, test results, and test

analysis to ensure that the model is correct.?
8. Is there a discussion of the alternatives and why they were rejected?

9. Are the major implementation alternatives and their evaluations presented in the
design documents?

Cost
Time
Resources for the alternates?

10. Is there an evaluation of the model that ensures that the requirements will be
satisfied.? Consider:

SCDOT Programmer’s Procedures Manual Rev. 0.0

SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures « 3-11
Proprietary Data

11.

12.

13.

14.

15.

16.

17.

18.

19.

LOCKHEED

Design Review Checklist

Performance
Storage requirements
Quality of results
Ease of use
Maintainability
Adaptability
Generality

Technical excellence
Simplicity

Flexibility
Readability
Portability

Modularity

Is there any hardware dependency?

Afterthoughts—Examine the last three things crammed into the design.
What has been crammed in?

Could you tell that they are crammed in?

What was not considered when this change was made?

What would happen if you left this change out of the design?

Are there any items in the design for which the justification is “we have always
done it this way”?

What happens for the error cases? Have any exceptions to the flow been
indicated? If not, are there any that were missed?

Have we forgotten the user?

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc

Proprietary Data

Procedures e 3-12

3.4.2.2 Design Review Report

Design Review Summary Report

Review Starting Time
Date Ending Time
Feature Id

Produced By

Brief Description

Materials Used In Review Description
Participants Signature

1. Leader

2. Recorder

3.

4.

5.

6.

7

Accepted Not Accepted
_____Asis ______ Major Revisions
______ Minor Revisions _ Rebuild

_____ Review Not Completed
Supplementary Materials Description
____ Issues List
____ Related Issues List
Other

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Chap_3.doc Procedures ¢ 3-13
Proprietary Data

GLOSSARY OF TERMS

Glossary of Terms

ANSI
American National Standards Institute
API
Application Program Interface
ASCII
American Standard Code for Information Interchange
AST
Asynchronous System Trap
CM
Configuration Management
DB
Database
DDE
Dynamic Data Exchange
DEC
Digital Equipment Corporation
e.g.
exempli gratia (“for example”)
GUI

Graphical User Interface

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Prog_Proc.doc Glossary of Terms « 1
Proprietary Data

id est (“that is” — used to restate, define, or clarify)

1710

Input / Output
LMIMS

Lockheed Martin Information Management Systems
MDI

Multiple Document Interface
SLE

Single Line Edit
SQL

Structured Query Language
TBD

To Be Determined
VBX

Visual Basic Extension
VMS

Virtual Memory System

SCDOT Programmer’s Procedures Manual Rev. 0.0
SC_DOT\User Manual\Rev_0.0\Programmers\Prog_Proc.doc Glossary of Terms « 2
Proprietary Data

